题目
搜题
更多“MST是最小重量生成树()”相关的问题
第4题
A.MST中若在树中任意增加一条边,将出现一个回路;若去掉一条边,将变成非连通图。
B.MST是最小连通子图,包含n 个顶点和n-1条边。
C.设C是一个环, f 是C中的最大边,那么最小生成树中肯定包含f.
D.哈夫曼编码是最优前缀码
第5题
阅读下列函数说明和C代码,将应填入(n)处的字句写上。
[说明]
若要在N个城市之间建立通信网络,只需要N-1条线路即可。如何以最低的经济代价建设这个网络,是一个网的最小生成树的问题。现要在8个城市间建立通信网络,其问拓扑结构如图5-1所示,边表示城市间通信线路,边上标示的是建立该线路的代价。
[图5-1]
![阅读下列函数说明和C代码,将应填入(n)处的字句写上。 [说明] 若要在N个城市之间建立通信网络,只](https://img2.soutiyun.com/ask/uploadfile/11115001-11118000/f607c0561871db45877fc1343bf3fd08.jpg)
无向图用邻接矩阵存储,元素的值为对应的权值。考虑到邻接矩阵是对称的且对角线上元素均为0,故压缩存储,只存储上三角元素(不包括对角线)。
现用Prim算法生成网络的最小生成树。由网络G=(V,E)构造最小生成树T=(U,TE)的Prim算法的基本思想是:首先从集合V中任取一顶点放入集合U中,然后把所有一个顶点在集合U里、另一个顶点在集合V-U里的边中,找出权值最小的边(u,v),将边加入TE,并将顶点v加入集合U,重复上述操作直到U=V为止。
函数中使用的预定义符号如下:
define MAX 32768 /*无穷大权,表示顶点间不连通*/
define MAXVEX 30 /*图中顶点数目的最大值*/
typedef struct{
int startVex,stopVex; /*边的起点和终点*/
float weight; /*边的权*/
}Edge;
typedef struct{
char vexs[MAXVEX]; /*顶点信息*/
float arcs[MAXVEX*(MAXVEX-1)/2]; /*邻接矩阵信息,压缩存储*/
int n; /*图的顶点个数*/
}Graph;
[函数]
void PrimMST(Graph*pGraph, Edge mst[])
{
int i,j,k,min,vx,vy;
float weight,minWeight;
Edge edge;
for(i=0; i<pGraph->n-1;i++){
mst[i].StartVex=0;
mst[i].StopVex=i+1;
mst[i].weight=pGraph->arcs[i];
}
for(i=0;i<(1);i++){/*共n-1条边*/
minWeight=(float)MAX;
min=i;
/*从所有边(vx,vy)中选出最短的边*/
for(j=i; j<pGraph->n-1; j++){
if(mst[j].weight<minWeight){
minWeight=(2);
min=j;
}
}
/*mst[minl是最短的边(vx,vy),将mst[min]加入最小生成树*/
edge=mst[min];
mst[min]=mst[i];
mst[i]=edge;
vx=(3);/*vx为刚加入最小生成树的顶点下标*/
/*调整mst[i+1]到mst[n-1]*/
for(j=i+1;j<pGraph->n-1;j++){
vy=mst[j].StopVex;
if((4) ){/*计算(vx,vy)对应的边在压缩矩阵中的下标*/
k=pGraph->n*vy-vy*(vy+1)/2+vx-vy-1;
}else{
k=pGraph->n*vx-vx*(vx+1)/2+vy-vx-1;
}
weight(5);
if(weight<mst[j].weight){
mst[j].weight=weight;
mst[j].StartVex=vx;
}
}
}
}
(1)
第6题
关于解决最小代价生成树问题的Prim算法的下述说法,不正确的是()。
A.从Q中取出一个顶点的实质是在应用MST性质选择连接A与V-A的最小权边
B.算法执行结束后,生成树有n-1个顶点
C.优先队列Q中顶点的键值指这个顶点与A集合中点的最小权边的权重
D.算法以优先队列为空为结束条件
第7题
阅读下列C程序和程序说明,将应填入(n)处的字句写在对应栏内。
【说明】 应用Prim算法求解连通网络的最小生成树问题。请阅读程序后填空。
const int MaxInt=INT MAX; //INT MAX的值在<limits.h>中
const int n=6; //图的顶点数,应由用户定义
typedef int AdjMatrix[n][n]; //用二维数组作为邻接矩阵表示
typedef struct{ //生成树的边结点
int fromVex,to Vex; //边的起点与终点
int weight; //边上的权值
}TreeEdSenode;
typedef TreeEdgeNode MST[n-1]; //最小生成树定义
void PrimMST (AdjMatrix G,MST T,int rt){
//从顶点rt出发构造图G的最小生成树T,rt成为树的根结点
TreeEdgeNode e; int i,k=0,min,minpos,v;
for(i=0;i<n;i++) //初始化最小生成树T
if(i!=rt){
T[k].fromVex=rt;
(1);
T[k++].weight=G[rt][i];
}
for(k=0;k<n-1;k++){ //依次求MST的候选边
(2);
for(i=k;i<n-1;i++) 八遍历当前候选边集合
if(T[i].weight<min) //选具有最小权值的候选边
{min=T[i].weight;(3);}
if(min==MaxInt) //图不连通,出错处理
{cerr<<“Graph is disconnected!”<<endl; exit(1);}
e=T[minpos];T[minpos]=T[k];(4);
v=T[k].to Vex;
for(i=k+1;i<n-1;i++) //修改候选边集合
if(G[v][T[i].to Vex]<T[i].weight){
T[i].weight=G[v][T[i].toVex];
(5);
}
}
}
警告:系统检测到您的账号存在安全风险
为了保护您的账号安全,请在“赏学吧”公众号进行验证,点击“官网服务”-“账号验证”后输入验证码“”完成验证,验证成功后方可继续查看答案!